We propose a new partial decoding algorithm for m-interleaved Reed-Solomon (IRS) codes that can decode, with high probability, a random error of relative weight 1 − Rm/m+1 at all code rates R, in time polynomial in the code length n. For m > 2, this is an asymptotic improvement over the previous state-of-the-art for all rates, and the first improvement for R > 1/3 in the last 20 years. The method combines collaborative decoding of IRS codes with power decoding up to the Johnson radius.
展开▼
机译:我们针对m交织的Reed-Solomon(IRS)码提出了一种新的部分解码算法,该算法可以在所有多项式R的时间多项式中以高概率解码相对权重为1 − Rm / m + 1的随机误差。码长对于m> 2,这是对所有速率的先前最新技术的渐近改进,并且在过去20年中对于R> 1/3的首次改进。该方法将IRS代码的协作解码与功率解码达到约翰逊半径相结合。
展开▼